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Abstract

Along with the usual predicates “prefix” and “equal length”, the
predicate “equal last letter” leads to a first order theory of the free in-
finitely generated monoid whose definable relations are related to the
algebra of relations recognized by different types of multitape automata
which are natural extensions of the famous Rabin-Scott multitape au-
tomata and the so-called synchronous automata. We investigate these
classes of automata and solve decision isssues concerning them.

1 Introduction

The theory of regular languages of a free monoid as developed in the fifties,
now belongs to the background of any undergraduate student in Computer
Science. Known to a more restricted public but equally interesting is its rich-
ness testified by the numerous different characterizations thereafter found
by Büchi in terms of second order logic and Schützenbeger in algebraic
terms. A great part of theoretical Computer Science is nowadays devoted
to extensions of this theory to more general structures such as n-tuples of
finite or infinite words, finite or infinite trees, words indexed by arbitrary
orderings, traces and message sequence charts with various domains of ap-
plications, cf. [2, 4, 3, 20]. The present work is concerned with the extension
to infinite alphabets of the theory of sets of n-tuples of words recognized by
finite automata, also known as rational relations, and their possible logical
characterization of which we briefly review some of the challenges.

∗LIAFA, Université Paris 7 & CNRS, 2, pl. Jussieu 75251 Paris Cedex 05

1



With finite alphabets, the main difference between regular sets of words
and regular sets of n-tuples of words is that the former are closed under
complement but that the latter are not. As a consequence, a logical char-
acterization of regular sets of n-tuples of words misses and, if it exists, it
can only be as a fragment of a theory. However, right from the beginning,
attempts were made to express these relations in some logical language, [9].
To our knowledge, only subfamilies of rational relations have received a log-
ical characterization, namely, the co-called special relations of Laüchli &
Savioz, [14], first introduced by Angluin & Hoover, [1], and the synchronous
relations of Elgot, Eilenberg and Shepherdson, [8]. A recent account on the
subject can be found in [5].

The purpose of the present work will be better understood if we recall
the literature. As early as 1969, Eilenberg, Elgot & Shepherdson, proved
that, for a finite alphabet Σ, the family of n-ary relations on the free monoid
Σ∗ which can be recognized by some n-tape automaton with reading heads
moving synchronously on the tapes are precisely those relations which are
definable in the first order theory of the free monoid Σ∗ with the following
predicates: unary predicates asserting that a word x ends with some spe-
cific letter a, denoted by Lasta(x) and two binary predicates, one asserting
that the words x and y have the same length, denoted by EqLen(x, y) and
the other one asserting that a word x is a prefix of a word y, denoted by
x ≤pref y. Their paper ends with some considerations involving the possi-
ble extension to infinite alphabets. We tried to clarify these observations
and proved and disproved some of the conjectures in [6]. We showed that
for words on infinite alphabets, the three predicates characterize relations
that can be recognized by some synchronous automaton subject to some
additional technical constraint. We also proved that a logical characteri-
zation of the relations recognized by truly synchronous automata requires
an extra binary predicate EqLenEqLast which asserts that two words have
the same length along with the same last letter: intuitively this predicate
cannot be expressed by the previous three predicates since it leads to an
infinite disjunction of conjunctions of the form Lasta(x) ∧ Lasta(y) for all
a ∈ Σ. Consequently, the two logics are decidable because the truth of a
sentence reduces to a problem of accessibility in a finite automaton. In a
further work, we disconnected the predicate “equal last letter”, denoted by
EqLast, from the predicate “equal length” and proved that the new logic
is strictly more powerful and that it is no longer decidable, [7]. We started
investigating the decision properties of the prefix classes and showed that
the fragment ∃∀∀ is undecidable.
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We now discuss the main results of the present work. In order to approx-
imate the predicate EqLast, we introduce two classes of multitape automata.
For the first one, called multicell synchronous automata, the reading heads
still move simultaneously on the different tapes, but they scan not only the
cell on the current position but the d last cells. In particular with d = 2
such automata are able to recognize the set of all words made of a single
repeated symbol: no synchronous automaton may recognize this set since
it may not compare successive symbols. This is an evidence that this new
class is strictly more powerful than that of synchronous automata. The
second class is simply that of multitape automata with reading heads mov-
ing independently, which we call asynchronous automata and which is the
natural extension to infinite alphabets of the ordinary notion of multitape
automaton for finite alphabets. In both cases we study the closure proper-
ties. Multicell synchronous relations are closed under all natural operations
except projection. Asynchronous relations are closed under the regular op-
erations (set union, componentwise concatenation and Kleene star) but not
under intersection nor complementation.

Let’s denote by Rsyn, Rmult and Rasyn the respective classes of syn-
chronous, multicell synchronous and asynchronous relations. Consider the
following structures (where “ees” is an acronym for Eilenberg, Elgot & Shep-
herdson)

Sees = 〈Σ∗;≤pref, EqLen, (Lasta)a∈Σ〉
Ssync = 〈Σ∗;≤pref, EqLen, EqLenEqLast, (Lasta)a∈Σ〉

= 〈Σ∗; (R)R∈Rsyn〉
Slast = 〈Σ∗;≤pref, EqLen, EqLast, (Lasta)a∈Σ〉
Smult = 〈Σ∗; (R)R∈Rmult〉
Sasyn = 〈Σ∗; (R)R∈Rasyn〉

In case Σ is a finite alphabet, the main result in Eilenberg, Elgot & Shep-
herdson [8] insures that the three first structures are equivalent: they define
the same relations, namely those in Rsyn, and their theories are decidable.
Since, for finite Σ, multicell synchronous automata reduce to synchronous
automata, the fourth structure is also equivalent to the first three ones and
has a decidable theory. As for the structure Sasyn, its theory is undecid-
able and its definable relations are exactly the arithmetical ones. This is
so because concatenation is definable as the intersection of the three asyn-
chronous relations {(x, y, z) | |z| = |x| + |y|}, {(x, y, z) | x ≤pref z} and
{(x, y, z) | y is a suffix of z}.
For an infinite alphabet Σ, the picture is totally different.
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As said above, in [6] and [7] we proved that the first three structures have
increasing expressive power, the first two have decidable theories whereas
the third one allows to define concatenation and therefore has an undecid-
able theory.
Here we prove that the last three structures are equivalent: they define the
same family of relations (cf. Theorem 18 which refines Theorem A below).

Theorem A. Given a relation on the free monoid Σ∗ on the infinite alphabet
Σ, it is first order definable in Slast if and only if it is first order definable
in Smult if and only if it is first order definable in Sasync.

In case Σ is countable, every bijection f : N → Σ allows to transfer the
computability structure on N to an f -computability structure on Σ and Σ∗.
Let’s call f -arithmetical any relation on Σ∗ which can be obtained from f -
computable ones via a series of projections and complementations.
Finally, let’s say that a relation R over Σ∗ is finitary if there exists a finite
subalphabet Σ0 ⊂ Σ such that R is invariant under any bijection of Σ∗

stemming from a bijection on the alphabet Σ which is the identity on Σ0.
These two notions are the ingredients of a characterization of relations de-
finable in our structures (cf. Theorem 21 which refines Theorem B below).

Theorem B. Suppose Σ is countable. An n-ary relation R on Σ∗ is de-
finable in the structures Slast, Smult, Sasync if and only if it is finitary and
f-arithmetical for some (resp. for all) bijection f : N → Σ.

Thus, the big jump decidable/undecidable occurring for finite alpha-
bets with asynchronous automata, already occurs with the EqLast predicate
when dealing with infinite alphabets.

Consequently, due to our previous undecidability result mentioned above,
the theory of the last four structures on the free monoid with infinite gener-
ators is undecidable and the decidable fragments must lie in low level prefix
classes. We study for each structure which fragments are undecidable. We
should expect that the predicate EqLast is less efficient than the multicell
predicates and these are less efficient than the asynchronous predicates. This
is indeed the case. We proved in [7] that the ∃∀∀ fragment of Slast is unde-
cidable . With Sasync, most usual decidability results for languages fail for
relations, even for finite alphabets. There are two notable exceptions. First,
a trivial one: the emptyness problem remains decidable. Second, the equiv-
alence problem, which is undecidable in general, is nevertheless decidable
when we consider deterministic asynchronous automata. This is a difficult
result using sophisticated algebraic tools about skew fields, cf. Harju &
Karhümaki, [11, 12].
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The main results concerning the structure Smult is that its ∃∗-fragment
is decidable (we reduce it to the case of finite alphabets) whereas the ∃∀-
fragment is undecidable. This latter result is rather surprising and is achieved
by an elaborated encoding of Post Correspondence Problem similar to that
in [7]. The gain of efficiency relative to the structure Slast is due to the fact
that multicell predicates allow us to express “equal last letter” in an indirect
way, thus sparing us one universal quantifier. The results are summarized
in the following table.

structure decidable fragment undecidable fragment
Slast ∃∗ [7] ∃∀∀ [7]
Smult ∃∗ Thm. 23 ∃∀ Thm. 24
Sasync ∃x1 . . .∃xn R(x1, . . . , xn) ∃x R(x, x) Prop. 25

∀x R(x, x) [13]
(R is an asynchronous relation) (R asynchronous)

Table 1: Decision status of fragments for the different structures

2 Preliminaries

2.1 Infinitely generated free monoids

We denote by Σ∗ the free monoid generated by the set Σ. The elements of
Σ and Σ∗ are letters and words (or strings) respectively. The empty word
is denoted by ε. The length of a word u is denoted by |u| and the i-th
occurrence of u, for all 1 ≤ i ≤ |u|, is denoted by u[i]. For all 1 ≤ i < j,
u[i . . . j] denotes the empty word if |u| < i and the word u[i] . . . u[k] where
k = min{j, |u|} otherwise. The concatenation of u ∈ Σ∗ and v ∈ Σ∗ is
denoted by uv. We say that u (resp. v) is a prefix (resp. suffix ) of uv and
the prefix is proper if v 6= ε. The concatenation is extended to subsets of
Σ∗ in the natural way. In the sequel, unless otherwise stated, Σ refers to a
fixed infinite alphabet.

2.2 Finite automata over infinite alphabets

The main objects studied in this work are finite automata on n-tuples of
words over non necessarily finite alphabets. This requires an extension of
the ordinary notion of finite automata as discussed in [6]. We briefly recall
the definitions.
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Let A be a finite Boolean algebra of subsets of Σ. A (non deterministic)
finite automaton on A is a quintuple A = (Q,Σ, E, I, F ) where Q is the
finite set of states, I and F are the sets of initial and terminal (or final)
states and E ⊆ Q×A×Q is the finite set of transitions. Given a transition
(q,X, p) ∈ E, the set X is called the label of the transition. A run is a
sequence of the form

q0
X1−−→ q1 . . . qn−1

Xn−−→ qn

where q0 ∈ I and (qi−1, Xi, qi) ∈ E for i = 1, . . . , n. Its label is the con-
catenation X1 . . . Xn ⊆ Σ∗ with the convention that this product is equal to
ε whenever n = 0. The run is successful if qn ∈ F . The subset recognized
by the automaton is the union, over all successful runs, of their labels. We
denote by Rec(A) the family of regular subsets of Σ∗, i.e., of subsets rec-
ognized by some finite automaton on the algebra A. The following closure
properties of recognizable subsets are easy extensions of well-known results.

Proposition 1. 1. Let A be finite Boolean algebras of subsets of Σ. Then
for all L,K ∈ Rec(A) we have L ∪K ∈ Rec(A) and Σ∗ \ L ∈ Rec(A)
2. Let B be a finite Boolean algebra of subsets of Σ containing A. If L ∈
Rec(A) then L ∈ Rec(B).

The second assertion of the next proposition is less standard. Its easy
proof is left to the reader. It uses the following notation: given two finite
Boolean subalgebras of subsets of two alphabets Σ and ∆, A⊗B denotes the
Boolean subalgebra {X × Y | X ∈ A, Y ∈ B} of the alphabet Σ×∆. Given
two subsets L ⊆ Σ∗ and M ⊆ ∆∗, we define L⊗M = (L×M)∩ (Σ×∆)∗ =
{(u, v) ∈ L×M | |u| = |v|}.

Proposition 2. Let A and B be two finite Boolean algebras of subsets of
two alphabets Σ and ∆.
1. Let h be a length preserving morphism of Σ∗ into ∆∗ (i.e., h(Σ) ⊆ ∆).
Assume that, for all X ∈ A and all Y ∈ B, we have h(X) ∈ B and h−1(Y ) ∈
A. Then, for all L ∈ Rec(A) and all M ∈ Rec(B), we have h(L) ∈ Rec(B)
and h−1(M) ∈ Rec(A).
2. If L ∈ Rec(A) and M ∈ Rec(B) then L⊗M ∈ Rec(A⊗B).

2.3 Multitape automata, relations and predicates

We will show how to accomodate one-tape automata over infinite alphabets
as just explained above, to multitape automata. This will allow us to intro-
duce two families of multitape automata over infinite alphabets which we
call multicell synchronous and asynchronous automata respectively. In the
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spirit of [6], the finite subalgebras of the labels are defined via conditions
of equality or inequality between the values of the scanned cells. For mul-
ticell synchronous automata, the different heads move synchronously along
the tapes but have the possibility of scanning the last d cells preceding the
current position, see figure 1. This extra feature does not increase the power
of the synchronous automata when the alphabet is finite since the informa-
tion can be stored and updated in the finite memory. The asynchronous
automata are a natural extension of their counterpart for finite alphabets as
introduced by Rabin & Scott in [16].

3 Multicell synchronous automata

We start with an informal introduction to the model. An n-tape multi-
cell synchronous automaton is a generalization of an n-tape synchronous
automaton, see [8]. It possesses n read heads, one for each tape, moving
synchronously from left to right on the input. The special feature of multi-
cell automata is that for some fixed integer d ≥ 1, each head scans d cells on
its tape, i.e., at time t it scans the letters at positions t−d+1, t−d+2, . . . , t.
Let’s call window the n × d array of cells thus inspected. The automaton
tests whether certain pairs of cells in the window are equal or different and
whether or not some cells of the window are equal to some fixed letter among
a finite predefined subset of the alphabet. Based on this piece of information,
the automaton changes state and moves one position further.

The input of an n-tape automaton is an n-tuple of words over some fixed
alphabet Σ. Words in this tuple may have different lengths, so that too short
components lead to “missing letters” in the window. To cope with these
missing letters, we introduce a padding symbol # which does not belong to
the alphabet Σ. E.g, the tuple of words (cabca, bba, aabcbc) is completed to
(cabca#, bba###, aabcbc). We also introduce another new padding symbol
2 outside Σ ∪ {#} for the virtual cells with negative positions left to the
input. Figure 1 is an illustration of such an automaton with n = d = 3, at
time t = 5 (imagine the window sliding along the input). The successive
windows scanned by the heads at times t = 1, . . . , 6 are shown on Figure 2.
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a a b c b c

b b a # # #

c a b c a #

Figure 1: A configuration

2 2 a

2 2 b

2 2 c

2 a a

2 b b

2 c a

a a b

b b a

c a b

a b c

b a #
a b c

b c b

a # #
b c a

c b c

# # #
c a #

Figure 2: The successive windows

Remark 3. In fact, identifying the padding symbols 2 and # would not
cause any problem.

3.1 Formal definitions

The idea of synchronous automata (even if multicell) is to work with a free
monoid, not a direct product of free monoids and thus to formalize the
passage from the situation illustrated in Figure 1 to that of Figure 2. We
first set Σ = Σ ∪ {#,2} and define the array alphabet as the set Σn×d.
Then we consider the mapping τn,d : (Σ∗)n → (Σn×d)∗ which associates to
an n-tuple of words (u1, . . . , un) ∈ (Σ∗)n a word δ(1) · · · δ(`) ∈ (Σn×d)∗ in
such a way that ` = max(|u1|, . . . , |un|) and, for 1 ≤ t ≤ `, 1 ≤ i ≤ n and
1 ≤ j ≤ d, we have

δ
(t)
i,j =


2 if t− (d− j) ≤ 0
ui,t−(d−j) if 1 ≤ t− (d− j) ≤ |ui|
# if |ui| < t− (d− j)

The transformation τn,d extends to subsets of (Σ∗)n.

As discussed in paragraph 2.2, once we have a free monoid over an infinite
alphabet, we need a finite Boolean subalgebra of subsets in order to define
a finite automaton. Among the possible candidates, the following one seems
natural.
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Definition 4. Given a finite subset Σ0 ⊆ Σ, called the subset of constants,
the algebra of finitary labels F

n,d
Σ0

, is the Boolean algebra of subsets of the
array alphabet Σn×d which are definable over Σ = Σ ∪ {2,#} by Boolean
combinations of formulas of the form

xi,k = a for a ∈ Σ0 ∪ {2,#}, and xi,k = xj,`

where the variables xi,k have indexes (i, k) varying in {1, . . . , n}×{1, . . . , d}.

In other words, it is the Boolean algebra of (n × d)-ary relations on
Σ = Σ ∪ {2,#} which are quantifier-free definable in the structure

〈Σ; =, (a)a∈Σ0∪{2,#}〉 (1)

Remark 5. It is worthwhile observing that the atoms of this algebra F
n,d
Σ0

are the classes of the equivalence on Σn×d defined by δ ≈Σ0
n,d η if and only if

we have ∧
1 ≤ i, j ≤ n,
1 ≤ k, ` ≤ d
a ∈ Σ0 ∪ {2, #}

(δi,k = a⇔ ηi,k = a) ∧ (δi,k = δj,` ⇔ ηi,k = ηj,`))

With all these ingredients we can define the notion of multicell syn-
chronous relation, without introducing a new type of automaton, since we
are able to “reuse” the definition given in §2.2.

Definition 6. 1. A d-cell, n-tape synchronous, Σ0-automaton is a finite
automaton on the finite algebra F

n,d
Σ0

. The automaton is multicell (resp.
multitape) when it is d-cell (resp. n-tape) for some d (resp. n).
2. A relation R ⊆ (Σ∗)n is d-cell, n-tape, Σ0-synchronous if there exists a
regular subset L ∈ Rec(Fn,dΣ0

) such that R = τ−1
n,d(L). If A recognizes L, we

also say by extension that it recognizes R. Furthermore, it is constant-free
if Σ0 = ∅. The terms multicell and multitape are used in the same way they
are used for automata.

3.2 A useful equivalence

The following is an adaptation to (Σ∗)n of the relation ≈Σ0
n,d mentioned after

Definition 4. It provides a necessary condition for a relation to be multi-
cell synchronous and will help us show that some relations are not multi-
cell synchronous. We denote by ∼Σ0

n,d the equivalence on (Σ∗)n defined by
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(u1, . . . , un) ∼Σ0
n,d (v1, . . . , vn) if and only if

|ui| = |vi| ∧
(ui[k] = a⇔ vi[k] = a) ∧
(ui[k] = uj [`] ⇔ vi[k] = vj [`])


for all 1 ≤ i, j ≤ n,
a ∈ Σ0 and
1 ≤ k, ` ≤ d s.t. |k − `| < d

(2)

Proposition 7. Each n-ary d-cell synchronous relation R ⊆ (Σ∗)n is satu-
rated under the equivalence ∼Σ0

n,d, i.e, ~u ∈ R and ~u ∼Σ0
n,d ~v implies ~v ∈ R

Proof. If (u1, . . . , un) ∼Σ0
n,d (v1, . . . , vn) holds then we have τn,d(u1, . . . , un) =

δ(1) · · · δ(`) and τn,d(v1, . . . , vn) = η(1) · · · η(`) for some integer ` and δ(i) ≈Σ0
n,d

η(i) for i = 1, . . . , `. Since equivalence classes of ≈Σ0
n,d are atoms of the finitary

algebra F
n,d
Σ0

, the words δ(1) · · · δ(`) and η(1) · · · η(`) label the same runs.

The multitape synchronous automata studied in [6] correspond to d = 1.
They differ from the general case d > 1 by their closure properties. Indeed,
they are closed under the Boolean operations, direct product and projection.
In fact they are characterized by the fact that the relations which they
recognize are precisely those that can be first-order defined in the structure
of the free monoid with the predicates “prefix”, “equal length” and “equal
length along with same last letter”.

3.3 Examples of multicell synchronous automata

All the three binary relations in the next examples are recognized by some
multicell synchronous automata but cannot be recognized by any synchronous
automaton (i.e., d = 1) as the reader may verify by applying for example
Proposition 7. The predicate EqLast(u, v) is interpreted as saying that u
and v end with the same letter.
Example 8. The relation {(u, v) ∈ (Σ∗)2 | |v| = |u| + 1 ∧ EqLast(u, v)}
is recognized by the following 2-cell synchronous constant-free automaton.
Recall that the similar relation {(u, v) ∈ (Σ∗)2 | |v| = |u| ∧ EqLast(u, v)} is
synchronous.

0��
��

- 1��
��
����s

{ α β

α′ β′
| β, β′ 6= #} -

{ σ #
σ′ σ

| σ, σ′ ∈ Σ}

Figure 3: A 2-tape 2-cell synchronous constant-free automaton recognizing
{(u, v) ∈ (Σ∗)2 | |v| = |u|+ 1 ∧ EqLast(u, v)}
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Example 9. Our second example defines another binary relation. The second
component of each pair in the relation is of the form σn for some σ ∈ Σ and
some n ∈ N, i.e., it is a repetition of the same letter. It will be used in the
proof of Theorem 24.

0��
��

- 1��
��
����

k
{ α β

σ σ′
| σ′ = # ∨ σ = σ′}-

{ 2 σ′

2 σ
| σ, σ′ ∈ Σ}

Figure 4: A 2-tape 2-cell synchronous constant-free automaton recognizing
{(u, σn) | u ∈ Σ∗, σ ∈ Σ, n ∈ N}

Example 10. The last example is a refinement of the previous one. The
letter a ∈ Σ0 is fixed. The second component of all pairs in the relation
is taken advantage of in order to insure that the first component does not
contain two ocurrences of σa for some arbitrary σ ∈ Σ. It will be used in
the proof of Theorem 24.

0��
��

-��
��
����

1��
��
����s

X1
-

X2

k
X3

X1 = { 2α
2β

| α, β ∈ Σ} ∪X3 , X2 =
σa
σσ

, X3 = { αβ
σσ

| αβ 6= σa}

Figure 5: A relation used in Theorem 24. Here a ∈ Σ0.

3.4 Closure properties

We consider here natural operations on multicell multitape synchronous re-
lations. Union and intersection require the relations to be of the same arity
but not necessarily the same window width. The first technical result guar-
antees that, without loss of generality, we may start up with relations of the
same window width.

Proposition 11. If the relation R is d-cell synchronous then it is also (d+
1)-cell synchronous.

Proof. Let π : (Σn,d+1)∗ → (Σn,d)∗ be the morphism which deletes the first
column of each array in Fn,d+1

Σ0
. Then we have τn,d = π ◦ τn,d+1. Let L ⊆
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(Σn,d)∗ be some regular language such that R = τ−1
n,d(L) = τ−1

n,d+1(π
−1(L)).

By Proposition 2, we have K = π−1(L) ∈ Rec(Fn,d+1
Σ0

), thus R = τ−1
n,d+1(K)

is d-cell synchronous.

The same type of normalization can be made for the finite alphabet of
constants. It is an immediate consequence of Proposition 1.

Proposition 12. If the relation R is d-cell, n-tape Σ0-synchronous then it
is also d-cell, n-tape Σ1-synchronous for all Σ1 ⊇ Σ0.

The family of multicell synchronous relations enjoys the same closure
properties as the family of ordinary synchronous relations, except closure
under projections.

Theorem 13. 1. The family of multicell synchronous relations with fixed
arity is closed under the Boolean operations.
2. The family of multicell synchronous relations (with arbitrary arities) is
closed under Cartesian product.

Proof. Let’s write simply Fn,d in place of F
n,d
Σ0

. Let L,K ∈ Rec(Fn,d) such
that R = τ−1

n,d(L) and S = τ−1
n,d(Y ). Then R ∪ S = τ−1

n,d(L ∪K) holds. Now,
since R is saturated under τ (i.e., ~x ∈ R and τ(~x) = τ(~y) implies ~y ∈ R)
we have (Σ∗)n \ X = τ−1

n,d((F
n,d)∗ \ R) which shows closure under Boolean

operations.
Consider now L ∈ Rec(Fn,d) and K ∈ Rec(Fm,d) such that R = τ−1

n,d(L)
and S = τ−1

m,d(K). Let A (resp. B) be the arrays in Fn,d (resp. in Fm,d having
their last columns made of occurrences of #. Observe that Fn,d ⊗ Fm,d =
Fn+m,d. Then R × S = τ−1

n+m,d(LA
∗ ⊗KB∗), which completes the proof by

Proposition 2.

However, closure under projection fails.

Proposition 14. Neither the relation

EqLast = {(u, v) ∈ Σ∗ | u and v have the same last letter}

nor its complement is multicell synchronous though both are projections of
2-cell 3-tape constant-free synchronous relations.

Proof. Suppose first that the relation EqLast is d-cell Σ0-synchronous for
some finite Σ0. Let σ, σ′, σ′′ ∈ Σ \ Σ0 be distinct letters. Using the equiv-
alence introduced in paragraph 3.2, we have (σdσ′, σ′) ∼n,d (σdσ′′, σ′), i.e,
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(σdσ′, σ′) ∈ EqLast if and only if (σdσ′′, σ′) ∈ EqLast, contradiction. An
analog argument applies to the complement of EqLast.

Concerning the second claim, letting π : (Σ∗)3 → Σ∗ be the projection
on the first two components, it is clear that EqLast and its complement are
respectively equal to π(A ∩ C) and π(B ∩ C) where

A = {(u, v, w) | |w| ≥ max(|u|, |v|) ∧ u[|u|] = w[|u|] ∧ v[|v|] = w[|v|]}
B = {(u, v, w) | |w| ≥ max(|u|, |v|) ∧ u[|u|] = w[|u|] ⇔ v[|v] 6= w[|v|]}
C = {(u, v, w) | all letters of w are the same}

It is clear that A,B are synchronous relations. LetX be the set of 3×2 arrays
with last line (σ, σ) or (2, σ) with σ ∈ Σ. It is clear that X ∈ F

3,2
∅ and that

the one state automaton with loop transition labelled by X recognizes C.
Thus, C is constant-free 2-cell synchronous and so are A∩C and B∩C.

4 Asynchronous automata

An asynchronous n-tape automaton on an infinite alphabet Σ is nothing
more than the natural extension of Rabin and Scott’s multitape automata
for words over finite alphabets, see [16].

Again, we need a finite Boolean subalgebra of subsets of the product of
alphabets. The natural candidate is similar to F

n,1
Σ0

, except that the extra
symbol 2 is now useless and the extra symbol # is replaced by a nonempty
subset of {1, . . . , n} to represent the support of the input, i.e., the indexes
of its non empty components.

Definition 15. Given a finite subset Σ0 ⊆ Σ and a non empty subset S of
{1, . . . , n}, the algebra of finitary labels L

n,S
Σ0

is the Boolean algebra of subsets
of ΣS which are definable over Σ by Boolean combinations of formulas of
the form

xi = a for a ∈ Σ0, and xi = xj

where the variables xi have indexes i varying in S.

An asynchronous n-tape Σ0-automaton on an infinite alphabet Σ is de-
fined by a finite set Q of states, a set of initial states I ⊆ Q, a set of
final states F ⊆ Q and a set of transitions of the form (q, S,X, P, p) where
q, p ∈ Q, P ⊆ S ⊆ {1, . . . , n} and X ∈ L

n,S
Σ0

.
The sole transitions (q, S,X, P, p) which occur in a run on an input

(w1, . . . , wn) ∈ Σ∗ are those for which S = {i | wi 6= ε}. Let’s describe
the dynamic of the device by explaining what instruction the transition
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(q, S,X, P, p) performs on input (w1, . . . , wn) ∈ Σ∗. Each one of the compo-
nents in S can be considered as a tape provided with a reading head posi-
tioned somewhere on the tape. Based on the occurrences of the components
read by the heads in a current position, say (ai)i∈S ∈ ΣS , if (ai)i∈S ∈ X,
then the device changes from state q to state p and the i-th head moves
to the next position of the i-th tape for all i ∈ P . All other heads stay at
their current position. The run starts in an initial state, with all the reading
heads positioned on the first occurrence of each component in S. If the
run enters a final state when the reading heads are positioned on the last
occurrence of each component in S, then the word is recognized. The set of
all n-tuples of words recognized by the automaton is the relation recognized
by the automaton. As usual, the n-tuple (ε, . . . , ε) is recognized just in case
I ∩ F 6= ∅.
Example 16. The 3-tape automaton of Figure 6 performs the concatenation,
i.e., recognizes all the triples of the form (u, v, uv). For any such triple there
is a unique accepting run. If u = v = ε it is reduced to state 2. If v = ε 6= u,
it starts in state 1 and ends in state 2. If u = ε 6= v it starts in state 3 and
ends in state 4. If u, v 6= ε it starts in state 1 and ends in state 4.
In Figure 7, the left 2-tape automata recognize the EqLast relation and its
complement and the right 2-tape automaton recognizes the relation R =
{(ε, ε)} ∪ {(σ, σn) | σ ∈ Σ, n ≥ 1}.
The labels of the transitions are given as pairs (φ, P ) rather than triples
(S,X, P ) : φ is a quantifier-free formula which defines X in the structure
〈Σ; =, (a)a∈Σ0〉 and S is any subset of {1, 2, 3} which contains P .

2��
��
����

2��
��?

1��
��?

3��
��

3��
��?

4��
��
����

�
x1 = x3, ∅

-
x1 = x3, {2, 3} -

x2 = x3, ∅�

x1 = x3, {1, 3}

�

x2 = x3, {2, 3}

Figure 6: Concatenation: {(u, v, uv) | u, v ∈ Σ∗}
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{(σ, σ) | σ ∈ Σ}, ∅sΣ× Σ, {1}

Σ× Σ, {2}

1��
��

- 2��
��
����

-
{(σ, σ′) | σ 6= σ′}, ∅sΣ× Σ, {1}

Σ× Σ, {2} 1��
��

�

2��
��

�2��
��
����

6x1 = x2, ∅

k
x1 = x2, {2}

Figure 7: EqLast, its complement and R = {(ε, ε)}∪{(σ, σn) | σ ∈ Σ, n ≥ 1}

4.1 Closure properties of asynchronous relations

The asynchronous relations are not closed under projection since the set
{σn | σ ∈ Σ, n ∈ N} is the projection of the asynchronous relation R in
Figure 7 but is not itself asynchronous. Indeed, if σ, τ are two letters in
Σ \Σ0 then they are in the same sets in F1

Σ0
(cf. Definition 15), so that any

Σ0-asynchronous automaton which recognizes σσ also recognizes στ .
The usual counterexample for finite alphabet, namely, {(an, bncn) | n ≥ 0} =
{(an, bncp) | n, p ≥ 0} ∩ {(an, bpcn) | n, p ≥ 0} for some fixed a, b ∈ Σ, also
shows that asynchronous relations are not closed under intersection either.

4.2 Incomparability of multicell synchronous and asynchronous
relations

The families of multicell and asynchronous relations are incomparable since
{σn | σ ∈ Σ, n ∈ N} is multicell but not asynchronous (see §4.1) and EqLast
is asynchronous but not multicell by Proposition 14.

Nevertheless, we have the following easy property.

Proposition 17. Let π be the projection of (Σ∗)n×d onto (Σ∗)n defined
by π((xi,k)i=1,...,n, k=1,...,d) = (x1,1, . . . , xn,1). Then any n-ary multicell Σ0-
synchronous relation R is of the form R = π(U∩T ) for some Σ0-synchronous
relation U and some Σ0-asynchronous relation T .

Proof. Suppose R is recognized by a d-cell Σ0-synchronous automatonAmult.
Let T be the relation recognized by the nd-ary asynchronous automaton
Aasyn which works as follows:

(i) In a first phase, for i = 1, . . . , n and k = 1, . . . , d, Aasyn positions the
head of its i(d − 1) + k-th tape on cell k. In case the input is empty
or too short, its length (which is < d) is memorized in the state.

(ii) Afterwards, Aasyn always moves all heads ahead.
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(iii) Aasyn mimics Amult, considering the nd cells scanned by its nd heads
as an n× d array scanned by Amult and changes states accordingly.

The synchronous nd-ary relation U is

U = {(ui,k)i,k ∈ (Σ∗)n×d | ui,1 = . . . = ui,d for every i = 1, . . . , n}

It is clear that the behavior of Aasyn on input (ui,k)i,k ∈ S is that of Amult

on input (u1,1, . . . , un,1) ∈ (Σ∗)n. Which shows that R = π(U ∩ T ).

5 The three structures on Σ∗

Letting Σ0 be a finite subset of Σ, we consider three structures on Σ∗.
(1) SΣ0

last = 〈Σ∗;≤pref, EqLen, EqLast, (Lasta)a∈Σ0〉
(2) SΣ0

mult = 〈Σ∗; (R)R∈Rmult
Σ0

〉,

(3) SΣ0
asyn = 〈Σ∗; (R)R∈Rasyn

Σ0
〉,

where ≤pref, EqLen, EqLast, Lasta are predicates such that
• x ≤pref y is true if and only if x is a prefix of y,
• EqLen(x, y) is true if and only if x and y have the same length,
• EqLast(x, y) is true if and only if x and y have the same last letter,
• Lasta(x) is true if and only if the last letter of x is a.
• Rmult

Σ0
is the collection of all multicell Σ0-synchronous relations,

• Rasyn
Σ0

is the collection of all Σ0-asynchronous relations.
To prove that these structures are equivalent, we compare their frag-

ments defined by prefix conditions. Then we study the decidability status
of such fragments.

5.1 The three structures are equivalent

The reason why the case of infinite alphabets differs from that of finite
alphabets is that we may simulate indices of a given word x. We do not
need the ordering of the indices, just the fact that an index is unique (we
named such a word injective in [7]).

Let’s expand the three structures SΣ0
last, S

Σ0
mult and SΣ0

asyn with the following
predicates and functions which are easily expressible in the structures:

• |x| ≤ |y| has the obvious meaning,

• Firsta(x) means that the first letter of x is a,
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• Pred(x) is the prefix of x of length |x| − 1 if it exists, else it is ε,

• x|y (resp. x|1) is the prefix of x of length |y| (resp. 1) if it exists, else
it is ε,

• for all finite subsets A ⊆ Σ, the predicates LastA(x) and Last¬A(x)
respectively stand for

∨
a∈A

Lasta(x) and
∧
a∈A

¬Lasta(x)

Let’s stress a possible source of confusion in the notation used in point 4
of the next theorem: Σ0 means a fixed subalphabet of the infinite alphabet
whereas Σn(S) (where S is some structure) means the family of relations
definable in S by Σn formulas (i.e., formulas with n − 1 alternations of
quantifiers which start with existential quantifiers).

Theorem 18. Let Σ be an infinite alphabet and Σ0 ⊆ Σ. Consider the
above expansions of SΣ0

last, SΣ0
mult and SΣ0

asyn.
(1) EqLast and its complement are constant-free asynchronous and are

both ∃ definable in SΣ0
mult.

(2) Every multicell Σ0-synchronous relation is both ∃∗∀ and ∀∗∃ definable
in each structure SΣ0

last and SΣ0
asyn.

(3) Every Σ0-asynchronous relation is ∃∗∀∗ definable both in SΣ0
last and in

SΣ0
mult.

(4) For n ≥ 1
{

Σn(SΣ0
last) ⊆ Σn(SΣ0

mult) ⊆ Σn(SΣ0
asyn) ⊆ Σn+2(SΣ0

last)
Σn(SΣ0

mult) ⊆ Σn+1(SΣ0
last)

In particular, SΣ0
last, SΣ0

mult and SΣ0
asyn have the same first order definable rela-

tions.

Proof. 1. Apply Example 16 and Proposition 14.

2. Consider a d-cell n-tape Σ0-synchronous automaton A with k states
q1, . . . , qk.
In case Σ0 6= ∅, the simplest way to encode states is to consider a sequence
of dlog ke symbols of Σ, each such symbol σ being considered as the Boolean
truth value of the assertion σ ∈ Σ0. In order not to exclude the case Σ0 = ∅,
we use another encoding: a state qi is coded by any sequence of k symbols
of Σ which contains exactly i distinct letters. Thus, a sequence of states
(qi1 , . . . , qiN ) is coded by any k-tuple of words (s1, . . . , sk) such that all si’s
have length N and, for j = 1, . . . , N , the index ij is equal to the number of
different letters among {s1[j], . . . , sk[j]}.
Let θi(~s, t) be the Boolean combination of formulas EqLast(sj |t, sj′ |t) ex-
pressing that there are exactly i different letters among the last letters of
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the sj |t’s (j = 1, . . . , k), i.e. that the state at time |t| is qi. Let A(~s) be the
similar Boolean combinations insuring that the first state is initial and the
last one is final.
Let x be an n × d-array of variables xi,j ’s. Any X ∈ F

n,d
Σ0

is the set of
solutions of some Boolean combination φX(x) of formulas xi,j = a, for
a ∈ Σ0 ∪ {2,#}, and xi,j = xi′,j′ . Going from letters in Σ ∪ {2,#} to
words in Σ∗, let ΦX(u1, . . . , un, t) be obtained from φ by replacing equalities
xi,j = 2 and xi,j = # by condition xi,j = ε (cf. Remark 3) and replacing
equalities xi,j = a, for a ∈ Σ0, and xi,j = xi′,j′ about letters in Σ by con-
ditions Lasta(ui|Pred(j−1)(t)) and EqLast(ui|Pred(j−1)(t), ui′ |Pred(j′−1)(t))
about the letters in the n × d window scanning cells |t| − d + 1, . . . , |t| of
u1, . . . , un.
Using an existentially quantified tuple of variables s1, . . . , sk to code the
sequence of states in a run, and a universally quantified t to encode (via
its length) all computation steps, the existence of an accepting run of A
on input (u1, . . . , un) can be expressed as follows (recall E is the set of
transitions):

∃s1, . . . , sk ∀t (|s1| = . . . = |sk| = max(|u1|, . . . , |un|) ∧ A(~s|1) ∧B(~s)
∧ (2 ≤ |t| ≤ |s1|+ 1 ⇒∨

(qi,X,qi′ )∈E

(θi(~s|Pred(t)) ∧ θi′(~s|t) ∧ ΦX(u1, . . . , un, Pred(t))))) (3)

This proves that any multicell Σ0-synchronous relation R is ∃∗∀ definable
in SΣ0

last. Such a definition for the complement of R, which is still multicell
Σ0-synchronous, yields a ∀∗∃ definition of R.
Applying Point 1, we get analog definitions of R in SΣ0

asyn.

3. Consider now an n-tape Σ0-asynchronous automaton A with states
q1, . . . , qk which recognizes a relation R. We reduce to the case where no
tuple in R has an empty component, which allows to forget mentioning the
support of the input in the transitions.
Due to asynchronicity, we can no more code a computation step by the sole
length of some (universally quantified) word. A trickier coding is required.
Denote by N the length of the computation. We shall simulate the ordered
initial segment {1, . . . , N} where N = max(|u1|, . . . , |un|) by considering a
word of length N , say π = γ1 . . . γN to suggest “position”, with pairwise
different letters (an “injective” word in the terminology used in [6]), cf the
figure below.
Letting T be the length of the computation (so T ≥ N), we encode the
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sequence of positions of the i-th head as a length T word hi (the symbol “h”
suggests a reading head). If the i-th head at time t is on cell j of the i-th
tape then hi[k] is equal to γj . In the example below, the input words have
lengths 4, 3 and 6, the head on the first tape moves at times 1, 2, 4, that
on the second tape moves at times 1, 6 and that on the third tape moves at
times 3, 5, 7, 8, 9. No head moves during the last transition from state q10 to
state q11.
States are encoded as above with a k-tuple of words ~s of length T .

~s q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11
h1 α β γ γ δ δ δ δ δ δ δ
h2 α β β β β β γ γ γ γ γ
h3 α α α β β γ γ δ λ µ µ
π α β γ δ λ µ

Let’s express the different conditions on the words t, h1, . . . , hn, s1, . . . , sk.
(1) π has length max(|u1|, . . . , |un|).
(2) Letters in π are pairwise distinct:

∀π′∀π′′ ((π′ ≤pref π
′′ ≤pref π ∧ EqLast(π′, π′′) ⇒ π′ = π′′)

(3) |s1| = . . . = |sk| = |h1| = . . . = |hn|, i.e., the sj ’s and the hi’s all have
the same length which is the computation length.

(4) A(~s), i.e., the first state is initial and the last one is final (cf. the above
proof of point 2).

(5) hi is obtained from some prefix of π by replacing each letter γj by
a non empty block of letters γj . This is characterized by a recursive
condition: (i) the first letter of hi is γ1, (ii) if γj occurs in hi at rank
≥ 2 then it is preceded by γj or γj−1. Ignoring indexes, this can be
expressed as

EqLast(π|1, hi|1)
∧ ∀π′ ∀h′ ((|π′| ≥ 2 ∧ π′ ≤pref π ∧ h′ ≤pref hi ∧ EqLast(π′, h′))

⇒ (EqLast(Pred(π′), Pred(h′)) ∨ EqLast(h′, Pred(h′))))

(6) the last position of the i-th head is equal to the length of ui. This
means that the last letter of hi is γ|ui|, and, ignoring indexes, can be
simply expressed as EqLast(hi, π|ui).

Now, if 1 ≤ t ≤ T , we want to find out which letter is scanned at time t by
the i-th head. By definition of hi, at time t the i-th head scans cell j where
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γj is the t-th letter of hi. Now, this t-th letter is the last letter of hi|t and
j is the length of the unique prefix π′ of π such that EqLast(π′, hi|t). Thus,
the wanted scanned letter is the last letter of ui|π′ .
AnyX ∈ FnΣ0

is the set of solutions of some Boolean combination φX(x1, . . . , xn)
of formulas xi = a, for a ∈ Σ0, and xi = xj . Going from letters in Σ to
words in Σ∗, let ΦX(u1, . . . , un, π

′
1, . . . , π

′
n) be obtained from φX(x1, . . . , xn)

by replacing equalities xi = a, for a ∈ Σ0, and xi = xj about letters in Σ by
conditions Lasta(ui|π′) and EqLast(ui|π′i , uj |π′j ).
Letting Ψ(~u,~s,~h, π) be the conjunction of formulas in (1)-(6) above, the ex-
istence of an accepting run of A on input (u1, . . . , un) can be expressed as
follows (recall E is the set of transitions):

∃s1, . . . , sk ∃h1, . . . , hn ∃π (Ψ(~u,~s,~h, π) ∧ ∀h ∀π′1, . . . , π′n
((2 ≤ |h| ≤ |h1| ∧

∧
i=1,...,n

π′i ≤pref π ∧ EqLast(hi|Pred(h), π′i))

⇒
∨

(qi,X,qi′ )∈E

(θi(~s|Pred(h)) ∧ θi′(~s|h) ∧ ΦX(u1, . . . , un, π
′
1, . . . , π

′
n))))

This proves that any Σ0-asynchronous relation R is ∃∗∀∗ definable in SΣ0
last.

Using point 1, this proves that R is also ∃∗∀∗ definable in SΣ0
mult.

4. All stated inclusions are straightforward consequences of points 1–3.

5.2 Relation to arithmetical definability

To complete Theorem 18, we characterize the relations first-order definable
in any of the considered three structures in case Σ is countable.

The following definition follows a suggestion of Eilenberg & al. in [8],
that was worked out in our paper [6].

Definition 19. A relation R ⊆ (Σ∗)n is Σ0-finitary if it is invariant under
all morphisms f : Σ∗ → Σ∗ which act as permutations on Σ and as the
identity on Σ0.

The following are basic notions of recursion theory, e.g., [15] and [17].
Letting ∆ be a finite alphabet, recall that a relation R on N (resp. on ∆∗)
is arithmetical if it satisfies any one of the two equivalent conditions (for
words on finite alphabets, cf. Seibert, 1991 [19]):

(i) R is first-order definable with addition and multiplication (resp. con-
catenation),
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(ii) R can be obtained from computable relations via a series of projections
and complementations,

The notion extends to infinite alphabets in the following way. First it
extends to N by saying that a relation R ⊆ (N∗)n, i.e., a relation over the
set N∗ of finite sequences of integers is arithmetical, if for any computable
encoding of finite sequences of integers by integers, the relation can be viewed
as an arithmetical relation on N. As for an infinite alphabet Σ, we need an
explicit bijection with N.

Definition 20. Let f : N∗ → Σ∗ be a morphsim which defines a bijection
from N to Σ. We say that R ⊆ (Σ∗)n is f-computable ( resp. f-arithmetical)
if f−1(R) is computable (resp. arithmetical).

Theorem 21. Suppose Σ is countable and R ⊆ (Σ∗)n. The following con-
ditions are equivalent:

(1) R is first-order definable in SΣ0
asyn, SΣ0

last and SΣ0
mult,

(2) R is Σ0-finitary and f-arithmetical for every bijection f : N → Σ,
(3) R is Σ0-finitary and f-arithmetical for some bijection f : N → Σ.

Proof. (1)⇒(2). Clearly, ≤pref, EqLen, EqLast and the Lasta’s, a ∈ Σ0, are
Σ0-finitary and c-arithmetical. Now, the family of Σ0-finitary relations and
that of f -arithmetical relations are both closed under Boolean operations
and projections. Thus, they contain all relations definable in SΣ0

last.

The proof of the implication (3)⇒(1) goes through five steps. We consider
a finite alphabet ∆ = Σ0 ∪ {c, d} where c, d are two fixed distinct letters in
Σ \ Σ0.

Step 1. R can be encoded as an arithmetical relation S ⊆ (∆∗)n.
Consider the infinite prefix code C = Σ0 ∪ {ckd | n ∈ N} and let ϕ :

C∗ → Σ∗ be the bijective morphism such that ϕ(a) = a if a ∈ Σ0 and
ϕ(ckd) = f(p) where p is the k + 1-st integer in f−1(Σ \ Σ0). Set S =
ϕ−1(R) = {(v1, . . . , vn) | (ϕ(v1), . . . , ϕ(vn)) ∈ R}. We now show that the
relation S is arithmetical. We set f(s) = c and f(t) = d and let λ : N∗ 7→ N∗

be the arithmetical morphism defined on the set N of generators by

λ(p) =
{
p if f(p) ∈ Σ0

skt if p is the k + 1-th integer in N \ f−1(Σ0)
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Furthermore the following diagram commutes

N∗ λ−−−−→ N∗yf yf
Σ∗ ϕ−1

−−−−→ ∆∗

We claim that the relation S is f -arithmetical. Indeed, since it is included
in (∆∗)n and therefore in (Σ∗)n we may compute its inverse image by f :

f−1(S) = f−1(ϕ−1(R)) = λf−1(R)

Now f−1(R) is arithmetical and thus so is λf−1(R) = f−1(S). Let P be
the finite subset f−1(Σ0 ∪ {c, d}) of N and let g the restriction of f to P ,
which is arithmetical. We have g(f−1(S)) = S which shows that S is also
arithmetical.

Step 2. S is definable in S∆
last.

Indeed, since ∆ is a finite alphabet, it is known (Seibert, [19] Theorem
4.4) that any arithmetical relation over ∆∗ is definable in the structure
〈∆∗,=, ·〉 (where · is concatenation). Thus, S is definable in 〈∆∗,=, ·〉. Now,
when Σ is infinite, concatenation in Σ∗ is definable in S∅last (cf. Theorem 5
in our paper [6]). Since ∆ ⊂ Σ is finite, ∆∗ is definable in S∆

last.

Step 3. R can be recovered from S with no use of ϕ or f .
Let SΣ0 (resp CΣ0) be the family of bijections h : Σ∗ → Σ∗ (resp.

ψ : C∗ → Σ∗) which are the identity on Σ0. Observe that {h◦ϕ | h ∈ SΣ0} =
CΣ0 . Since R is Σ0-finitary, for every h ∈ SΣ0 , we have h(R) = R hence
h(ϕ(S)) = R. Thus, ψ(S) = R for every ψ ∈ CΣ0 . For all integers p define
Cp = Σ0 ∪ {ckd | k < p} and let C

p
Σ0

be the family of injective morphisms
C∗
p → Σ∗ which are the identity on Σ0. If |~v| denotes max(|v1|, . . . , |vn|), we

have

R =
⋃

ψ∈CΣ0

ψ(S) =
⋃
~v∈S

{ψ(~v) | ψ ∈ CΣ0} =
⋃
~v∈S

{θ(~v) | θ ∈ C
|~v|
Σ0
} (4)

Let Injp be the set of length p words in (Σ \ Σ0)∗ whose letters are
pairwise different. Such a word ξ = σ1 . . . σp−1 encode the the morphism
ψξ ∈ C

p
Σ0

satisfying σk = ψξ(ckd) for k = 0, . . . , p − 1. Thus, (4) can be
rewritten

R = {~u | ∃~v ∃ξ (~v ∈ S ∧ ξ ∈ Inj|~v| ∧
∧

i=1,...,n

ui = ψξ(vi)} (5)
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Step 4. Define R in the logic S∆
last.

Let’s express the right handside of (5) in S∆
last.

The conditions that all letters of ξ are distinct and that |ξ| = |~v| can
be clearly expressed. As for equalities ui = ψξ(vi), they can be expressed
as ∃η ∃w T (ui, vi, ξ, η, w) where T (u, v, ξ, η, w) is the conjunction of the
following conditions. Let Aξ be Σ with all letters in Σ0 or in ξ removed.

(i) If v = z0 c
`1d z1 c

`2d z2 . . . c
`pd zp with the zj ’s in Σ∗

0 (recall v is in
C∗) then w = z0 σ

`1
1 τ1 z1 σ

`2
2 τ2 z2 . . . σ

`p
p τp zp where σk is the k + 1-st

letter of ξ and τk ∈ Aξ. In particular, |w| = |v|. We also require that
the τk’s are pairwise distinct.

(ii) η = z0 τ1 z1 τ2 . . . τp zp

(iii) For 1 ≤ j ≤ |u|, if η[j] ∈ Σ0 then u[j] = η[j]. Else, u[j] = w[|w′| − 1]
where w′ is the prefix of w with last letter η[j].

We now express these conditions in S∆
last.

For condition (i), first, state |w| = |v| and that zj ’s are preserved when going
from v to w :

∀v1 ≤pref v ∀w1 ≤pref w (|v1| = |w1| ⇒
∧
a∈Σ0

Lasta(v1) ⇔ Lasta(w1))

Concerning the passage from the ckd’s in v to the σkτ ’s in w we write

∀v1, v2, v3 ∀w1, w2, w3 ∀τ ∈ Σ ∃ξ′ ≤pref ξ ∃σ ∈ Σ \ Σ0

((v = v1v2dv3 ∧ v2 ∈ c∗ ∧ ¬Lastc(v1) ∧ w = w1w2τw3 ∧
∧
i=1,2,3 |vi| = |wi|)

⇒ (|ξ′| = |v2| ∧ EqLast(σ, ξ′) ∧ w2 ∈ σ∗ ∧ ¬EqLast(σ,w1) ∧ τ ∈ Aξ))

The sole remaining condition from (i) is the requirement that the τk’be
pairwise distinct in w : express that if the last letters of two distinct prefixes
of w are in Aξ then they are distinct,

For condition (ii), express that
• η and w have the same prefixes in Σ∗

0 and the same factors in AξΣ∗
0,

• η and w have the same letters in Aξ and they occur in the same order.
Condition (iii) is straightforward to express. Thus, T , hence also R, is
definable in S∆

last.

Step 5. Define R in the logic SΣ0
last.

We must go from S∆
last = SΣ0∪{c,d}

last to SΣ0
last. Observe that ϕ and S depend

on c, d, and so does the obtained definition of R. But this is uniform in c, d,
i.e., R = {~u | Φ(~u, c, d)}
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Since c, d are arbitrary, we have R = {~u | ∃c, d ∈ Σ \ Σ0 (c 6= d ∧
Φ′(~u, c, d))} where Φ′ is obtained from Φ by replacing any occurrence of the
predicates Lastc(x) and Lastd(x) by EqLast(x, c) and EqLast(x, d). This
is a definition in SΣ0

last.

5.3 The existential fragment of Smult is decidable

Here we study fragments of the first order structure Smult. First, we show
that the existential fragment is decidable. Later, in §5.4 we show that the
∃∀-fragment is not.

Since the class of multicell synchronous relations is closed uner the
Boolean operations, a formula of the existential fragment of Smult is of the
form

∃x1, . . .∃xnφ(x1, . . . , xn)

where φ is defined by a multicell synchronous relation. In other words, the
decidability of the existential fragment is equivalent to the decidability of
the emptiness problem for multicell relations which we assume specified by
some multicell synchronous automaton. We prove this decidability problem
by reducing it to the same problem for finite alphabets. Indeed, in that latter
case, multicell synchronous relations are equivalent to synchronous relations
and the result follows from the decidability problem in the underlying graph
of the automaton.

We follow notation introduced in §2.1..

Lemma 22. Let Σ0 be a finite subalphabet of an infinite alphabet Σ. Then
there exists a subset Σ1 ⊆ Σ \ Σ0 with nd letters such that all equivalence
classes of the equivalence defined in paragraph 3.2 has a representative in
Σ0 ∪ Σ1.

Proof. Consider any subset of nd letters in Σ \ Σ0 and order its elements
a1 < . . . < and. Consider an n-tuple (u1, . . . , un). We show how to define
an n-tuple (v1, . . . , vn) such that

(u1, . . . , un) ∼n,d (v1, . . . , vn) and (v1, . . . , vn) ∈ (Σ0 ∪ Σ1)∗

Set N = max{|ui| | 1, . . . , n}. We show by induction on ` that for all
d ≤ ` ≤ N there exist (w1, . . . , wn) such that

(u1[1 . . . `], . . . , un[1 . . . `]) ∼n,d (w1, . . . , wn)
and (w1, . . . , wn) ∈ (Σ0 ∪ Σ1)∗.

(6)
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Consider first ` = d and the n-tuple (u1[1 . . . `], . . . , un[1 . . . `]). Let K ≤ nd
be the number of different letters outside Σ0 which occur in u1[1 . . . `], . . .,
un[1 . . . `]. Define (w1, . . . , wn) from u1[1 . . . `], . . ., un[1 . . . `] by substituting
a1, . . . , aK to these letters. Conditions (2) of § 3.2 are clearly satisfied.

Now, assume condition (6) holds for some d ≤ ` ≤ N . We want to prove
that for some z1, . . . , zn ∈ (Σ0 ∪Σ1)∗ we have (u1[1 . . . `+1], . . . , un[1 . . . `+
1]) ∼n,d (z1, . . . , zn). If |ui| ≤ ` then set zi = wi. For all other components,
we set zi = wiσi for some letters σi that we now define. Condition (6) for
`+ 1 differs from that for ` as concerns the n× d window with right side at
rank `+ 1. This window scans letters with ranks `− d+ 2, . . . , `+ 1. In the
words u1[` − d + 2 . . . `], . . . , un[` − d + 2 . . . `]), there are at most n(d − 1)
different letters outside Σ0. Let Σ2 ⊂ Σ1 be the letters of w1, . . . , wn in the
corresponding positions. Let I ⊆ {1, . . . , n} be the set of the indices where
the letters ui[`+1] differ from those occurring in u1[`−d+2 . . . `], . . . , un[`−
d+2 . . . `]) and let m be the cardinality of I. Since Σ1 \Σ2 contains at least
nd− n(d− 1) = n letters, it suffices to assign the m first letters of Σ1 \ Σ2

to the wanted σi’s, i ∈ I.

Theorem 23. There exists an algorithm which, given a formula

∃x1, . . .∃xnφ(x1, . . . , xn)

decides whether or not it holds.

Proof. Because of the Boolean closure of the family of multicell multitape
relations, we may assume that the formula φ defines a multicell, multitape
relation. The problem reduces thus to determining whether or not an d-cell,
n-tape Σ0-synchronous automaton A recognizes an n-tuple. Let Σ1 be a
family of nd letters in Σ\Σ0. Let A′ be obtained from A by substituting for
each label of a transition, its intersection with the finite alphabet Σ0 ∪ Σ1.
By the previous lemma, there exists an n-tuple (w1, . . . , wn) ∈ Σ∗ such
that τn,d(w1, . . . , wn) is recognized by A if and only if there exists an n-
tuple (w1, . . . , wn) ∈ (Σ0 ∪ Σ1)∗ such that τn,d(w1, . . . , wn) is recognized
by A′. But this latter problem amounts to determining whether or not a
synchronous automaton on a given finite alphabet accepts some nonempty
relation, which is decidable.

5.4 The ∃∀-fragment of Smult is undecidable

Here we show exactly where the bound lies between decidable and undecid-
able fragments.
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Theorem 24. There exists no algorithm which, given a sentence of the
form ∃x∀yφ(x, y) where φ(x, y) is a first-order formula of the theory Smult,
decides whether or not it holds.

Proof. The idea of our proof is to encode the Post Correspondence Problem
(PCP), which is known to be undecidable. This is done in a way similar to
that used in our paper [7]. Recall that

An instance π = {(u1, v1), . . . , (uk, vk)} of PCP for words in {a, b}∗ is a
finite subset of pairs of non empty words in {a, b}∗.

A non-trivial solution of the PCP for π is a non-empty word w which
can be factorized as w = ui1 . . . uir = vi1 . . . vir for some sequence
(i1, . . . , ir) ∈ {1, . . . , k}∗.

We consider pairwise distinct markers γ1, . . . , γr+1 and encode these two
factorizations as follows. Let w1 . . . wm be the coarsest factorization of w
refining the previous two factorizations. For each wi there are three possible
cases: either it is a prefix of an occurrence uis solely, or it is a prefix an
occurrence of vi` solely or it is a prefix of an occurrence uis and of an
occurrence of vi` . We set ω = z1w1 . . . zmwmγr+1aγr+1b where for 1 ≤ i ≤ m
we have zi = γisa in the first case and zi = γi`b in the second case and
zi = γisaγi`b in the last case. Let’s illustrate the process on the instance π =
{(a, aba), (baaab, a)} which has the solution w = a baaab a = aba a aba. The
coarsest factorization which refines both factorizations is w = a ba a ab a.
The encoding of w is ω = (γ1a)(γ1b)a(γ2a)ba(γ2b)a(γ3b)ab(γ3a)a(γ4a)(γ4b).

With this interpretation of the different γ’s, a word ω encodes a solution
w of the PCP for π if and only if it satisfies the following conditions where
Γ = Σ \ {a, b} :

(i) Non trivial. |ω| ≥ 9
(ii) Start. There exists γ ∈ Γ such that γaγb is a prefix of ω.
(iii) End. There exists γ′ ∈ Γ such that γ′aγ′b is a suffix of ω.
(iv) Markers. Every occurrence in ω of a letter in Γ is immediately followed

by an occurrence of a or b.
(v) Markers are distinct. No factor in Γa or Γb occurs twice in ω.
(vi) Inductive step of a backward decomposition of ω.

If γ ∈ Γ and xγa and yγb are both prefixes of ω then either x = ε and
y = γa or there exists (ui, vi) ∈ π and u′i, v

′
i and γ′ ∈ Γ such that

• γ′au′i is a suffix of x and γ′bv′i is a suffix of y
• u′i ∈ (Γb ∪ {ε})ui,1Γbui,2 . . .Γbui,mi where ui = ui,1ui,2 . . . ui,mi and
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the ui,j ’s are 6= ε,
• v′i ∈ vi,1Γavi,2 . . .Γavi,ni(Γa∪{ε}) where vi = vi,1vi,2 . . . vi,ni and the
vi,j ’s are different from ε.
Observe that mi ≤ |ui| and ni ≤ |vi| since the ui,j ’s and vi,j ’s are 6= ε.
Thus, the lengths of u′i, v

′
i are bounded by 3|π| = 3max(|u1|, |v1|, . . . , |uk|, |vk|).

We first consider the following relations where for u ∈ Σ∗ and c = a, b,
µc(u) stands for the word obtained by removing from u all factors of the
form γc where γ ∈ Γ.

B = {(ω, γ|ω|) | ω ∈ Σ∗, γ ∈ Γ}
Bc = {(ω, γ|ω|) ∈ B | γ ∈ Γ and γc occurs at most once in ω} for c = a, b

Bab = {(ω, γ|ω|) ∈ B | γa occurs in ω if and only if so does γb}
Bu
c = {(ω, γ|ω|) ∈ B | if a prefix of ω ends with γc then it ends with

γ′u′γc where |u′| ≤ 3|π|, µb(u′) = u and γ′ ∈ Γ}

Denote by φ1(ω) the formula on ω defined by the conditions (i) – (iv)
and by φ2(ω) and φ3(ω) the formulas defined by the conditions (v) and (vi)
respectively. Then we have

φ2(ω) ≡ ∀y ((ω, y) ∈ B ⇒ (ω, y) ∈ Ba ∩Bb)
φ3(ω) ≡ ∀y((ω, y) ∈ B ⇒ ((ω, y) ∈ Bab ∧

∨
(u,v)∈π

(ω, y) ∈ Bu
a ∩Bv

b )

Then PCP has a solution if and only if the sentence ∃xφ1(x) ∧ φ2(x) ∧
φ3(x) holds. Let us verify that it belongs to the ∃∀-fragment of the theory.
Clearly φ1(x) defines a multicell synchronous relation. In order to prove the
theorem it suffices to verify that the relations B, Bc for c = a, b, Bab and for
Bu
c for c = a, b and u ∈ Σ∗−{ε} are multicell too. Examples 9 and 10 show

that B and Bc for c = a, b are multicell synchronous relations which settles
the case of φ2(x). Let Θc for c = a, b be the subalphabet of F2,2 consisting

of all arrays of the form
γc
γγ

where γ ∈ Γ. We have Bab = B ∩ τ−1
2,2 (M)

where M ∈ RecF is defined by (we set F = F2,2∗)

M = (FΘaF ∩ FΘbF ) ∪ ((F \ FΘaF ) ∩ (F \ FΘbF ))

Concerning Bu
c for c = a, b, it is the inverse image under τ2,3|π|+3 of the

subset in RecF
2,3|π|+3
Σ0

consisting of all words written on the subalphabet of
arrays whose top line does not end in Γc and all words containing an array

of the form
zγc

γ3|π|+3 where γ ∈ Γ and z ∈ Σ∗ is such that |z| = 3|π|+1.
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5.5 Decision issues of the structure Sasync

In this last paragraph we prove the assertions of Table 1 about the decision
problem in the structure Sasync.

Proposition 25. 1. The family of true formulas of the form
∃x1 . . .∃xn R(x1, . . . , xn)

where n ≥ 1 and R is an n-ary asynchronous relation over words in an
infinite alphabet, is decidable.
2. The family of true formulas of the form ∃x R(x, x), where R is a binary
asynchronous relation, is undecidable.
3. The family of true formulas of the form ∀x R(x, x), where R is a binary
asynchronous relation, is undecidable.

Proof. 1. This is the decidability of the emptyness problem, which reduces
to an accessibility problem in a finite graph.
2. We adapt an old result stating the undecidability of the disjointness
problem for asynchronous relations, see [10] (the fact that the alphabet is
infinite is irrelevant). To any instance π = {(u1, v1), . . . , (uk, vk)} of the
Post correspondence problem, associate the following ternary asynchronous
relation Rπ : Rπ(x, y) is true if (x, y) is a non empty product of pairs of
words in π, i.e., x, y are of the form x = ui1 . . . uip and y = vi1 . . . vip . It is
clear that ∃x R(x, x) is true if and only if the instance π of the PCP has a
solution.
3. We shall use the following result from [13] (again, the fact that the al-
phabet is infinite is irrelevant). Given a binary asynchronous relation R,
it is undecidable to test whether R(x, x) holds for every x in the domain
of R. That is, the family of true formulas ∀x ((∃z R(x, z)) ⇒ R(x, x))
is undecidable. Now, observe that {x | ∃z R(x, z)} is regular, so that
{(x, y) | (∃z R(x, z)) ⇒ R(x, y)} is also an asynchronous relation. Thus,
the family of true formulas ∀x S(x, x), S an asynchronous binary relation,
is also undecidable.

5.6 Multicell asynchronous automata

A natural common generalization of the ideas underlying multicell syn-
chronous automata and asynchronous automata is to enrich asynchronous
automata as follows: on each tape, the head scans d consecutive cells.

This notion of multicell asynchronous automaton is strictly more general
than the two notions considered before. For instance, {(σ′, σnσ′) | σ, σ′ ∈
Σ, n ∈ N} is multicell asynchronous but neither multicell synchronous nor
asynchronous.
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Closure of multicell asynchronous relations under intersection and com-
plement fail as they do with asynchronous relations. Closure under projec-
tion fails as it does with multicell synchronous relations.

It is routine to extend Theorem 18 to the structure with multicell asyn-
chronous relations.
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